Section 4.5: Row and column spaces

New vocabulary: ,

* row space, column space D’F & oo
row rank, column rank, rank

pivot column

null space

We learn:

e an algorithm to find a basis for the column
space

e an algorithm to find a basis for the row
space

e how to find a subset of a spanning set that is
a basis

e how to extend an independent set to a basis




Question like Section 4.5 13-16 (and also 1-12)

Find a subset of the vectors

DRERERE

that is a basis for the subspace they span.
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Question like Section 4.5 13-16 (and also 1-12)

Find a subset of the vectors

DRERERE

that is a basis for the subspace they span.
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Definition: the column space of a matrix A is
& ‘MSFW& D]/— toe oz Lovianns a%ﬂfl
matnx

Example: the column space of

T 2 3 4
2 4 1 3
-1 -2 0 -1

is the space spanned by the vectors

( 2 3 4
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Definition: a pivot column of a matrix A is a
column of A for which the echelon form of A
has a leading entry (or pivot). 1 2 3

Example: The pivot columns of [p 4 1

are cols | & 3 [
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Theorem.
The pivot columns of a matrix A form a basis for

the column space of A.
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Example: The vectors(-zgg ! (5\/are a basis for

the column space of A.

Questions:

1. What is the dimension of the column space
of the matrix A in the example?
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2. Of what space is the column space of A a
subspace?
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Definition. The row space of a matrix A is the
span of the rows of A.

AN

1 3
Example. The row space of |2 1
-1 -2 0

is the subspace of RA4 spanned by

Look at the row space of
(It's quicker to write down!
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Theorem 2. The row space of A is not
changed by elementary row operations. Hence
A has the same row space as its echelon form.
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Question: true or false in general?:

‘Let A be a matrix. The column space of A is not
changed by elementary row operations. Hence A
has the same column space as its echelon form.
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Theorem 2. The row space of A is not
changed by elementary row operations. Hence
A has the same row space as its echelon form.

Question like Section 4.5, 1-12

Find a basis for the row space of the matrix
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Theorem 2 extra: The non-zero rows of the

echelon form of A form a basis for the row
space of A



Definition. The row rank of a matrix A is the ?m@jl D/P Téi evem |

dimension of its row space.
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The column rank of a matrix A is the dimension YO g W\d&c ednelot

f its col : \
of its column space ol 2ok = hidebest ‘%ﬁ-{faéim
oneg ih {-('ceéc[/l&(m .

Theorem. For any matrix A the row rank and

column rank are equal. Thew. o The some.
. le. For th . 1 12 3| |4

xample. For the matrix 74 3
They are both 2. 1 2 0 -

Definition. The common value of the row rank
and column rank of a matrix is called the rank of
the matrix.




Question like Section 4.5, 17-20.

Find a basis for RA3 that contains the vectors
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Definition. The nullspace of A is the vector
space of solutions to Ax = 0.
It might be written Null A .

It iszcalled the nullity of A.
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Theorem. For any m x n matrix A,
rank A + dim Null A =n
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Question: Have we done this calculation before?
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Definition. The nullspace of A is the vector
space of solutions to Ax = 0.

It might be written Null A .

It is called the nullity of A.

Theorem. For any m x n matrix A,
rank A + dim Null A =n

Example. Find a basis for the nullspace of




Questions:

Are the following true or false in general for an
nxn matrix A?

a. If A hasrank n then Ax=b hasa
solution for every vector b in R/n,

True False

say.

Not enough information to

b. If Ax=0 has a unique solution then Ax =
b always has a solution, for every b in RAn.
True False
say.

Not enough information to
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Question:

Suppose that A isan m x n matrix (m rows,
n columns) and that Ax =0 has a unique
solution. Which of the following statements is
sometimes false?

a. The columns of A are linearly
independent.

b. The columns of A span a space of
dimension n.

c. The columns of A are a basis for the space
they span.

d. m<n




